Multichannel Robot Speech Recognition Database: MChRSR

نویسندگان

  • José Novoa
  • Juan Pablo Escudero
  • Josué Fredes
  • Jorge Wuth
  • Rodrigo Mahu
  • Néstor Becerra Yoma
چکیده

In real human-robot interaction (HRI) scenarios, speech recognition represents a major challenge due to robot noise, background noise and time-varying acoustic channel. This document describes the procedure used to obtain the Multichannel Robot Speech Recognition Database (MChRSR). It is composed of 12 hours of multichannel evaluation data recorded in a real mobile HRI scenario. This database was recorded with a PR2 robot performing different translational and azimuthal movements. Accordingly, 16 evaluation sets were obtained re-recording the clean set of the Aurora-4 database in different movement conditions. 1. Database Recording The experimental setup used in the database recording employs a PR2 robot which is a state-of-the-art mobile manipulation robot. It has a Microsoft Xbox 360 Kinect sensor mounted on the top. We re-record the clean test set from Aurora-4 database [1] in a meeting room considering different relative movements between the speech source and the robot. A TANNOY 501a loudspeaker was used as the audio source. The recording process was performed with the PR2’s Microsoft Kinect sensor which has a four-microphone array. The re-recording was carried out while the robot was performing translational and head rotation movements simultaneously. Before the recording of each robot movement condition, the background noise was measured and the maximum of equivalent sound pressure level (Leq) over ten minutes was 39dBA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Robot Arm Performing Writing through Speech Recognition Using Dynamic Time Warping Algorithm

This paper aims to develop a writing robot by recognizing the speech signal from the user. The robot arm constructed mainly for the disabled people who can’t perform writing on their own. Here, dynamic time warping (DTW) algorithm is used to recognize the speech signal from the user. The action performed by the robot arm in the environment is done by reducing the redundancy which frequently fac...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Developing a Standardized Medical Speech Recognition Database for Reconstructive Hand Surgery

Fast and holistic access to the patients’ clinical record is a major requirement of modern medical decision support systems (DSS). While electronic health records (EHRs) have replaced the traditional paper-based records in most healthcare organization, the data entry into these systems remains largely manual. Speech recognition technology promises substitution of the more convenient speech-base...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00061  شماره 

صفحات  -

تاریخ انتشار 2017